

DOE's EGS Program Review

Identifying Fracture Types and Relative Ages Using Fluid Inclusion Stratigraphy

Lorie Dilley

Hattenburg Dilley & Linnell

Phone (907) 564-2120 Fax (907) 564-2122

ldilley@hdlalaska.com

Project Objective

- ❖ To develop a technique using FIS to identify fractures and their relative ages in a geothermal borehole.
- * Fractures over their life cycle have different chemical signatures that can be observed in bulk fluid inclusion gas analysis

EGS Problem

- ❖ This project will address EGS goal of mapping fractures and assist in targeting areas within a well for fracture stimulation and enhancement.
- * By recognizing the stage of a fracture: currently open; recently closed; or ancient; areas for enhancement can be chosen.
- ❖ This tool is low cost compared to geophysical logging tools and can lower the cost of development of EGS boreholes

Background/Approach

- Fluid Inclusion Stratigraphy is based on interpreting fluid sources from fluid inclusion gas analysis.
- ❖ FIS analyses plotted on mud logs show significant peaks and valleys – peaks correspond to high density of fluid inclusions formed near or within fractures.

Calcite Vein at 661 feet from Coso Well 64-16

Permeable Zones

Methodology

- Collect FIS samples from three cores from different geothermal systems
- Analyze samples using FIT
- ❖ Compare the data to the core logs and existing well logs/geological data to determine which species and/or ratios may be used − H2O, CO2/N2, Propane/propene, N2/Ar

Results/Accomplishments

- Verify peaks observed in FIS data are related to fractures
- Determine which species/ratios work for identifying specific fracture types
- Verify FIS can provide reliable information about fractures among different fields
- Verify FIS can be used to target select areas for fracture stimulation

Conclusion

❖ Have just started – project to last approximately one year.